## Diffuse Reflectance Studies of Dye-Adjuvant Chemisorption

## By MICHAEL BORNSTEIN, JOHN P. WALSH, BILL J. MUNDEN, and JOHN L. LACH\*

A number of pharmaceutical adjuvants were screened by means of diffuse reflectance spectroscopy for possible solid-solid interaction with certified Red No. 3, Blue No. 1, and Yellow No. 5 dyes. Results indicate that a metallic or polyfunctional adsor-bent molecule is necessary for these interactions. Furthermore, it was generally observed that the order of metallic adjuvant interaction with these dyes is  $Mg^{2+} > Ca^{2+} >$ Zn<sup>2+</sup> ~ Al<sup>3+</sup>. Spectral and visual color changes, elution studies, and accelerated fading techniques support the reflectance data presented.

SEVERAL ARTICLES have recently appeared in the literature which point out drug-adjuvant interactions (1, 2) and the need for prescreening of the excipients used in the preparation of solid dosage forms. Since such interactions may be responsible for the various therapeutic discrepancies reported in related formulations, these interactions may also be of significant importance in color and drug stability.

## **EXPERIMENTAL**

Reagents-FD&C Red No. 3 dye and aluminum lake (National Aniline), FD&C Blue No. 1 dye (National Aniline), FD&C Yellow No. 5 dye and aluminum lake (Warner-Jenkinson Mfg. Co.), acacia, aluminum hydroxide, aluminum stearate, calcium hydroxide, cellulose acetate phthalate, citric acid, lactose, magnesium citrate, magnesium hydroxide, pectin, polyethylene glycol 6000 (Carbide and Corton Chemical Corp.), starch U.S.P., titanium dioxide, zinc oxide, zinc sulfate.

Apparatus—Beckman DU spectrophotometer with a diffuse reflectance attachment, constant-temperature water bath set at  $30 \pm 0.5^{\circ}$  with rotating spindles (1), assorted round amber bottles from 30 to 200 ml. with caps, Parafilm (Marathon Co.), aluminum foil (Reynolds), vacuum oven (National Appliance Co.), glass desiccator, lyophilizer (Na-tional Research Corp.) attached to a refrigeration system (Webber Refrigeration).

### PROCEDURES

Equilibration Technique—The general method of studying these interactions involves equilibrating a weighed amount of adsorbent for 24 hr. with distilled water or an organic equilibration medium. After equilibration the dispersion medium is removed either by vacuum filtration followed by vacuum drying at 35° for 24 hr., by vacuum evaporation from a glass desiccator, or by freezing the aqueous media with the aid of a dry ice-methanol mixture

and lyophilization for 24 hr. The particular drying method used is described under Results and Discussion.

Preparation of the Sample-A specified amount of pre-equilibrated dye and adsorbent (pharmaceutical adjuvant) are weighed. The powders are then placed in a suitable amber bottle and 20 ml. of the dispersion media is added. The bottle is covered with Parafilm or aluminum foil, capped, and equilibrated for 24 hr. at  $30 \pm 0.5^{\circ}$  in order to effect interaction. After equilibration, one of the following three techniques is employed in order to dry the samples.

Vacuum Filtration and Drying--Used for samples with aqueous dispersion media reported in Tables I and II. The suspension is vacuum filtered after equilibration and the powder is dried in a vacuum oven at 35° for 24 hr. The resulting dry powder is then triturated, and its diffuse reflectance (DRS) measured using a magnesium carbonate reference standard.

Evaporation by Vacuum-The equilibrated solution or suspension is placed in an evaporation dish and placed in a vacuum desiccator. The organic solvent is removed at room temperature, and the resulting powder is triturated and its DRS measured.

Drying by Lyophilization-This process is used exclusively in all the samples reported in Table II. The equilibrated aqueous solution or suspension is frozen in a dry ice-methanol mixture and lyophilized for 24 hr. The resulting powder is triturated and its DRS measured.

Preparation of the Control-A specified weight of the previously equilibrated and dried adsorbent is physically mixed with an indicated amount of preequilibrated and dried adsorbate using a mortar and pestle. The DRS of this control is then measured using a magnesium carbonate reference standard.

## SPECIAL TECHNIQUES

Washing the Sample—The dry powdered sample is placed in a 51-mm. Büchner funnel and 200 ml. of distilled water is added and removed by vacuum filtration. The resultant powder is dried and its DRS measured.

Accelerated Light Studies-The powder under study is packed into an inverted 4-cm. diameter bottle cap and placed into an Envira-Lite cabinet (Thermal Research, Inc.) which houses 10 Westinghouse F-40 CW/RFL fluorescent lamps and 4 GE lumiline No. L60 IF/T8 incandescent lamps and is

Received April 14, 1967, from the Research Center, Pitman-Moore Division of the Dow Chemical Co., Zionsville, IN 46077

Accepted for publication July 12, 1967. Presented to the Basic Pharmaceutics Section, А.Рн.А. Academy of Pharmaceutical Sciences, Las Vegas meeting, April 1967. \* Present address: University of Iowa, College of Phar-macy, Iowa City, IA 52240

TABLE I—FD&C RED NO. 3 DYES OR LAKES: DYE OR LAKE REACTIONS WITH PHARMACEUTICAL ADJUVANTS USING AN EXCESS OF COLORING MATTER

| Dye or Lake +<br>Adjuvant | Concn.,<br>Dye: Adjuvant | Equilibration<br>Media | Method of<br>Solvent Removal   | Relative Size of<br>Spectral Chang |                                                                       |
|---------------------------|--------------------------|------------------------|--------------------------------|------------------------------------|-----------------------------------------------------------------------|
| Dye + TiO2                | 200 mg.:4.00 Gm.         | EtOH                   | Vacuum<br>evaporation          | No significant<br>change           | White to off white                                                    |
| $Dye + TiO_2$             | 200 mg.:4.00 Gm.         | H <sub>2</sub> O       | Vacuum filter,<br>wash and dry | Medium<br>change                   | White to white                                                        |
| Dye + starch              | 100 mg.:4.00 Gm.         |                        | Vacuum<br>evaporation          | Small change                       | Light pink to pink                                                    |
| Lake + starch             | 100 mg.:4.00 Gm.         | Dil. EtOH (1:1)        | Vacuum<br>evaporation          | No significant<br>change           | Light pink to light pink                                              |
| Dye + lactose             | 200 mg.:4.00 Gm.         | EtOH                   | Vacuum<br>evaporation          | No significant<br>change           | Light pink to light pink                                              |
| Dye + CAP                 | 200 mg.:4.00 Gm.         | H <sub>2</sub> O       | Vacuum filter,<br>wash and dry | Small change                       | Lavender with white specks<br>to fire engine red (hetero-<br>geneous) |
| Dye + CAP                 | 200 mg.:4.00 Gm.         | EtOH                   | Vacuum<br>evaporation          | Small change                       | Lavender with white specks<br>to fire engine red, solid mass          |
| Dye + PEG 6000            | 200 mg.:4.00 Gm.         | Acetone                | Vacuum<br>evaporation          | Small change                       | Light violet to deep, fluores-<br>cent red                            |

TABLE II—FD&C YELLOW NO. 5 DYES OR LAKES: DYE OR LAKE REACTIONS WITH PHARMACEUTICAL ADJUVANTS USING AN EXCESS OF COLORING MATTER

|                           |                         |                        |                                | Relative Size            |                                                                |
|---------------------------|-------------------------|------------------------|--------------------------------|--------------------------|----------------------------------------------------------------|
| Dye or Lake +<br>Adjuvant | Concn.,<br>Dye:Adjuvant | Equilibration<br>Media | Method of<br>Solvent Removal   | of Spectral<br>Changes   | Visual Color Changes<br>(Control to Sample)                    |
| Dye + Al stearate         | 200 mg.:2,00 Gm.        | H <sub>2</sub> O       | Vacuum filter,<br>wash and dry | No significant<br>change | Heterogeneous whitish pink<br>to light yellow                  |
| Dye + ZnSO <sub>4</sub>   | 100 mg.:4.00 Gm.        | EtOH                   | Vacuum<br>evaporation          | Small change             | Orange to intense yellow                                       |
| Dye + ZnO                 | 200 mg.:4.00 Gm.        | $H_{2}O$               | Vacuum filter,<br>wash and dry | No significant<br>change | Off white to off white                                         |
| Dye + Mg citrate          | 100 mg.:4.00 Gm.        | CHCl <sub>3</sub>      | Vacuum<br>evaporation          | Large change             | Light peach to intense yellow                                  |
| Dye + citric acid         | 100 mg.:4.00 Gm.        | CHC13                  | Vacuum<br>evaporation          | Small change             | Orange to yellow-gold                                          |
| Dye + TiO <sub>2</sub>    | 200 mg.:4.00 Gm.        | $H_{2}O$               | Vacuum filter,<br>wash and dry | No significant<br>change | White with red specks to white                                 |
| Dye + starch              | 100 mg.:4.00 Gm.        | Dil. EtOH (1:1)        | evaporation                    | Medium<br>change         | Pink to bright yellow                                          |
| Lake + starch             | 100 mg.:4.00 Gm.        | Dil. EtOH (1:1)        | filtration                     | Small change             | Pink to bright yellow                                          |
| Dye + lactose             | 200 mg.:4.00 Gm.        | EtOH                   | Vacuum<br>evaporation          | No significant<br>change | Orange to heterogeneous<br>orange with dark pink crys-<br>tals |
| Lake + CAP                | 100 mg.:4.00 Gm.        |                        | Vacuum filter,<br>wash and dry | No significant<br>change | Yellow to yellow                                               |
| Dye + PEG 6000            | 200 mg.:4.00 Gm.        | CHCla                  | Vacuum<br>evaporation          | Increased<br>reflectance | Heterogeneous light orange to<br>orange                        |
| Dye + PEG 6000            | 200 mg.:4.00 Gm.        | Acetone                | Vacuum<br>evaporation          | No significant<br>change | Heterogeneous light orange to<br>deep vellow                   |
| Dye + acacia              | 100 mg.:4.00 Gm.        | EtOH                   | Vacuum<br>evaporation          | Medium<br>change         | Heterogeneous light orange to<br>intense orange                |
| Lake + acacia             | 50 mg.:4.00 Gm.         | EtOH                   | Vacuum<br>evaporation          | No significant<br>change | Yellow to yellow                                               |
| Dye + pectin              | 100 mg.:4.00 Gm.        | Dil. EtOH (1:1)        |                                | Increased<br>reflectance | Golden yellow to golden<br>yellow                              |

equipped with a rheostat dimmer and fan. The light intensity used throughout this study was 2,000 foot candles (f.c.) and the temperature within the cabinet was  $32 \pm 3^{\circ}$ .

## **RESULTS AND DISCUSSION**

Although it is generally acknowledged that the most common type of dye instability in pharmaceutical and cosmetic systems is due in part to light and thermal rearrangements, it is possible that some of these color changes occurring in solid dosage formulations may be due to dye-excipient interactions (1). During the past 10 years some attention has been given to color stability in pharmaceutical dosage forms (3, 4). A number of reports have appeared in the literature dealing with studies to elucidate the nature of this interaction, the effect of excipients with respect to fading, and methods employed to retard such an interaction (5-8). Since most of the adjuvant interaction have been studied in solution, very little information is available concerning the degree of this interaction observed with diffuse reflectance techniques.

Since diffuse reflectance spectroscopy (DRS) has been shown to be a useful tool for interaction studies in the solid state (1), this technique was employed to further study dye-adjuvant interactions.

In this present study, various certified dyes were screened with a large group of adjuvants for the existence of such interactions. The dyes, FD&C Red No. 3, Blue No. 1, and Yellow No. 5, were selected either on the basis of their chemical structure, light instability, or use in pharmaceuticals. The adjuvants were chosen on the basis of the metal fraction or polyfunctional groups they contain (8) or because of their use in medicinal dosage forms.

As has been pointed out in previous communications (9-11) the adsorbate/adsorbent ratio must be carefully considered in order to observe these solidsolid interactions; if an excess of adsorbate is used, the monomolecular chemisorption occurring at the surface of the adsorbent is masked by subsequent physical layers of the adsorbate, and the DRS spectrum approaches that of the pure dye under investigation. In this preliminary dye-adjuvant interaction study, 50 to 200 mg. of dye was used with 4.00 Gm. adjuvant samples. The controls, reported in Tables I and II, were prepared by physically mixing the dye with pre-equilibrated and vacuum dried adjuvants; the samples represent the result of equilibrating dye-adjuvant combinations in the designated equilibration media, followed by either vacuum evaporation of the solvent at room temperature or removal of the solvent by vacuum filtration, washing of this sample, and vacuum drying at about 35° for 24 hr.

An examination of the data reported in Tables I and II suggests that these dyes either undergo little interaction or that the dye-adjuvant ratio was such as to completely mask any effects due to chemisorption (unimolecular layer). The absorbance behavior of multilayers of the dye on these excipient particles becomes similar to that of the pure dye (1).

The spectral changes observed with Red No. 3 dye after equilibration with various adjuvants (see Table I) were small and correlate well with the lack of visual color changes observed. It is interesting to point out, however, that the spectral changes observed as a result of equilibrating Yellow No. 5 dye with starch or magnesium citrate did produce significant spectral and visual color changes at these high dve-adjuvant concentration ratios, suggesting chemisorption. Figure 1 illustrates this Yellow No. 5 dye-starch interaction. It is clearly seen that the absorbance and visual color change of the sample (see Table II) along with a new band formation at 315 m $\mu$  is indicative of a strong interaction. It is also interesting to note here that the interaction of the corresponding Vellow No. 5 lake with starch is much smaller, suggesting that a number of the adsorption sites are not available in the aluminum lake.

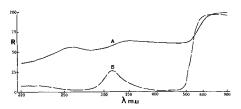



Fig. 1—DRS of FD&C Yellow No. 5 dye (100 mg.) and starch (4.00 Gm.). Key: A, control; B, sample equilibrated in 30 ml. dilute ethanol (1:1).

As has already been mentioned, spectral changes due to chemisorption are readily seen when a single layer of the dye is chemisorbed onto the surface of the adsorbent (8,9). Since the dye-adjuvant ratios employed in the initial phase of this investigation were high, these interactions were again studied, using lesser quantities of the dye. Dye concentrations of 30 mg./10.00 Gm. of adjuvant were found suitable in exhibiting this chemisorption effect.

In order that all experimental conditions be kept constant, the controls in this phase of study were prepared by separately equilibrating the dye and adjuvant in distilled water for a period of 24 hr., followed by lyophilization to remove the solvent media. The appropriate concentration of dye and adjuvant

was then weighed and physically mixed by geometric dilution, and the diffuse reflectance spectrum (DRS) of this control was measured, using a magnesium carbonate reference standard. Interacted samples were prepared by placing a weighed amount of pre-lyophilized dye and adjuvant in a suitable container, adding distilled water, and equilibrating the mixture for 24 hr. This interacted sample was then lyophilized and triturated and its DRS was obtained. Although the degree of spectral change depends on both the dye and excipient under investigation, "no significant change," reported in the tables, will be defined as spectral intensity changes of 10 reflectance units (RU) or less. A "small change" will generally indicate intensity changes of 10-30 RU, whereas a "medium change" implies a spectral change of about 30-60 RU; a "large change" indicates hyperchromic changes of 60 or more reflectance units at the maximum wavelength. It is interesting to point out that the aqueous solvent serves as a dispersion medium in order to facilitate maximal interaction with the sites available. These interactions will also occur in the solid unequilibrated state in the presence of moisture (10).

Tables III, IV, and V summarize the data obtained in this study, using the structurally different certified Red No. 3, Blue No. 1, and Yellow No. 5 dyes. The spectral changes observed in these low dve concentration systems again correlate well with visual color changes observed. Typical interaction spectra of several Red No. 3-adjuvant systems are presented in Figs. 2–4. An examination of these figures certainly illustrates the high degree of interaction as evidenced by the large absorbance and other spectral differences of the equilibrated sample as compared with the control. The strength of these interactions with various adjuvants can also be demonstrated with the use of an elution technique. For example, the dye in the Red No. 3-Al(OH)3 or Red No. 3-ZnO system exhibiting small or medium-sized spectral changes (Fig. 4) was readily eluted with water. In comparison, starch or  $Mg(OH)_2$  interactions with this same dye, presented in Figs. 2 and 3, did not undergo significant spectral changes after the sample was washed with distilled water, indicating a stronger interaction.

It should be pointed out, however, that in spite of the fact that a dye can be readily desorbed from an excipient, indicating a relatively weaker adsorption, the interaction is nevertheless important since the color stability of the intact dosage form may be affected by this weaker interaction. In contrast, desorption of a medicinal agent from an adjuvant material is extremely important in that the therapeutic availability of this agent is directly related to this desorption phenomenon or chemical interaction.

The strength of these interactions was sometimes further correlated by subjecting the equilibrated sample to accelerated light fading conditions. For example it is seen that under these conditions, the color intensity of a Red No. 3-Al(OH)<sub>3</sub> equilibrated sample undergoes 61% increased reflectance. This change occurs at the  $\lambda_{max}$  after a 42-hr. exposure to 2,000 f.c. artificial light. On the other hand, the Red No. 3-Mg(OH)<sub>2</sub> equilibrated sample exhibits approximately 17% increased reflectance under the same conditions. This slower rate of fading or dye decomposition in the dye-Mg(OH)<sub>2</sub> system may be indicative of a stronger chemisorbed system. This is

| TABLE III—FD&C RED NO. 3 DYE: DYE REACTIONS WITH PHARMACEUTICAL ADJUVANTS (CONCENTRATION: |
|-------------------------------------------------------------------------------------------|
| 30 mg. Dye/10.00 Gm. Adjuvant)                                                            |

| D. J. N. 9 D.               | Relative Size of          | Visual Color<br>Changes (Control | Effect of Washing<br>Sample with 200 ml. | Sample Exposure t                               | o Artificial Light<br>f.c.         |
|-----------------------------|---------------------------|----------------------------------|------------------------------------------|-------------------------------------------------|------------------------------------|
| Red No. 3 Dye<br>+ Adjuvant | Spectral Changes          | to Sample)                       | Water                                    | 42 hr.                                          | 184 hr.                            |
| Al(OH) <sub>3</sub>         | Small to medium<br>change | Light pink to<br>light pink      | Eluted; spectrum<br>approaches adjuvant  | Increase of 21 RU<br>or 61% fading <sup>a</sup> | Increase of 34 RU<br>or 95% fading |
| Ca(OH) <sub>2</sub>         | Medium to large<br>change | Light pink to<br>pink            | No elution                               | Increase of 16 RU<br>or 22% fading              |                                    |
| $Mg(OH)_2$                  | Large change              | Light pink to<br>lavender        | No elution                               | Increase of 12 RU<br>or 17% fading              | Increase of 29 RU<br>or 41% fading |
| ZnO                         | Medium change             | Faint pink to<br>sharp pink      | Eluted                                   |                                                 |                                    |
| ZnSO                        | No significant<br>change  | Light pink to<br>light pink      |                                          |                                                 |                                    |
| Mg citrate                  | Small change              | Pink to red-<br>dish-pink        |                                          |                                                 |                                    |
| Citric acid                 | No significant<br>change  | Light pink to<br>whitish pink    |                                          |                                                 |                                    |
| Starch                      | Large change              | Light pink to<br>pink            | No elution                               | Increase of 27 RU<br>or 42% fading              | Increase of 49 RU<br>or 78% fading |
| Lactose                     | Medium change             | Light pink to<br>rosy red        |                                          |                                                 | Increase of 2 RU<br>or 4% fading   |
| Acacia                      | Small to medium<br>change | Light pink to<br>pink            |                                          |                                                 |                                    |

<sup>a</sup>% Sample fading at  $\lambda_{\text{mex.}} = \frac{\text{R}_{\text{faded sample}} - \text{R}_{\text{sample}}}{\text{R}_{\text{sample}} + \frac{1}{2}} \times 100.$ 

Rcontrol - Rsample

# $\begin{array}{c} \mbox{Table IV} - \mbox{FD\&C Blue No. 1 Dye: Dye Reactions with Pharmaceutical Adjuvants} (Concentration: $30 \mbox{ mg. Dye}/10.00 \mbox{ Gm. Adjuvant}) \end{array}$

| Blue No. 1 Dye<br>+ Adjuvant | Relative Size of<br>Spectral Changes | Visual Color Changes<br>(Control to Sample) | Effect of Washing<br>Sample with 200 ml.<br>Water | Sample Exposure to 42 hr.<br>Artificial Light at 2,000 f.c. |
|------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------------------|-------------------------------------------------------------|
| Al(OH) <sub>3</sub>          | Medium change                        | Powder blue to<br>bluish-gray               | Eluted                                            | Increase of 14 RU<br>or 31% fading                          |
| $Ca(OH)_2$                   | Medium change                        | Gray to light<br>lavender                   | Eluted                                            | Increase of 12 RU<br>or 30% fading                          |
| $Mg(OH)_2$                   | Large change                         | Faint blue to deep<br>blue                  | Little elution                                    | Increase of 3 RU<br>or 3% fading                            |
| ZnO                          | Medium to large<br>change            | Powder blue to<br>blue                      | Eluted                                            |                                                             |
| ZnSO4                        | Large change                         | Light blue to sky<br>blue                   |                                                   |                                                             |
| Mg citrate                   | Large change                         | Light blue to dark<br>blue-green            |                                                   |                                                             |
| Citric acid                  | No significant to<br>small change    | Light blue to<br>powder blue                |                                                   |                                                             |
| Starch                       | Large change                         | Light blue to blue                          | Little elution                                    | Increase of 1 RU<br>or 1% fading                            |
| Lactose                      | Large change                         | Light blue to<br>blue-green                 |                                                   |                                                             |
| Acacia                       | Large change                         | Gray to deep blue                           |                                                   |                                                             |

## TABLE V—FD&C Yellow No. 5 Dye: Dye Reactions with Pharmaceutical Adjuvants (Concentration: 30 mg. Dye/10.00 Gm. Adjuvant)

| Yellow No. 5<br>Dye +<br>Adjuvant | Relative Size of<br>Spectral Changes | Visual Color Changes<br>(Control to Sample) | Effect of Washing Sample<br>with 200 ml. Water | Sample Exposure to 42 hr<br>Artificial Light at 2,000 f.c |
|-----------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------------|-----------------------------------------------------------|
| $Al(OH)_3$                        | Medium change                        | Off white to yellow                         | Eluted; spectrum<br>approaches adjuvant        | No significant<br>change                                  |
| $Ca(OH)_2$                        | Medium change                        | Off white to yellow                         | About <sup>2</sup> / <sub>5</sub> eluted       | Increase of 7 RU<br>or 11% fading                         |
| $Mg(OH)_2$                        | Large change                         | Off white to golden<br>yellow               | No significant elution<br>evident              | No significant<br>change                                  |
| ZnO                               | Medium change                        | Off white to yellow                         | Eluted                                         | 0                                                         |
| ZnSO4                             | Medium change                        | Faint yellow to light<br>orange-yellow      |                                                |                                                           |
| Mg citrate                        | Large change                         | Faint yellow to<br>canary yellow            |                                                |                                                           |
| Citric acid                       | Small to medium<br>change            | Light pink to<br>intense gold               |                                                |                                                           |
| Starch                            | Large change                         | Faint yellow to<br>darkish yellow           | Little elution                                 | No significant<br>change                                  |
| Lactose                           | Large change                         | White to deep<br>yellow                     |                                                | 2                                                         |
| Acacia                            | Large change                         | Off white to bright<br>yellow               |                                                |                                                           |
|                                   |                                      |                                             |                                                |                                                           |

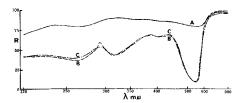



Fig. 2—DRS of FD&C Red No. 3 dye (30 mg.) and magnesium hydroxide (10.00 Gm.). Key: A, control; B, sample; C, sample washed with 200 ml. distilled valer.

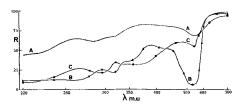



Fig. 3—DRS of FD&C Red No. 3 dye (30 mg.) and starch (10.00 Gm.). Key: A, control; B, sample; C, sample exposed to 184 hr. artificial light at 2,000 f.c.

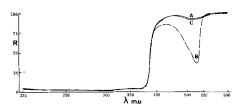



Fig. 4—DRS of FD&C Red No. 3 dye (30 mg.) and zinc oxide (10.00 Gm.). Key: A, control; B, sample; C, sample washed with 200 ml. distilled water.

clearly substantiated in the comparison of Blue No. 1 dye fading of starch and  $Ca(OH)_2$  equilibrated samples presented in Figs. 5 and 6 and Table IV. These results indicate the Blue No. 1 fades about 1% in a dye-starch chemisorbed sample as compared to 30% fading in the dye-Ca(OH)<sub>2</sub> equilibrated sample, exposed to similar accelerated light conditions.

It is also interesting to note that although lactose shows comparable spectral interaction changes with the dyes to that of starch, its fading characteristics are somewhat different. For example, Fig. 7C, which represents an equilibrated Red No. 3-lactose system, shows little fading tendency even after 184hr. exposure to artificial light at 2,000 f.c.; a Red No. 3-starch sample fades extensively under the same conditions, as illustrated in Fig. 3C. These differences show the complexity of these interactions and the need for individual dye-excipient study.

Although the structure of the dyes is quite different, suggesting different binding sites, it is nevertheless of interest to point out that the interaction obtained is dependent on both the dye and adjuvant employed. For example, Figs. 8 and 9 as well as Tables III, IV, and V illustrate that zinc sulfate reactions are markedly different with the dyes studied. Equilibration of this excipient with Red No. 3 dye, containing a sodium salt of a carboxyl group, but lacking phenylsulfonic acid functional groups,

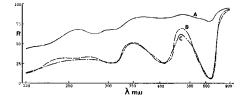



Fig. 5—DRS of FD&C Blue No. 1 (30 mg.) and starch (10.00 Gm.). Key: A, control; B, sample; C, sample exposed to 42 hr. artificial light at 2,000 f.c.

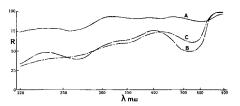



Fig. 6—DRS of FD&C Blue No. 1 dye (30 mg.) and calcium hydroxide (10.00 Gm.). Key: A, control; B, sample; C, sample exposed to 42 hr. artificial light at 2,000 f.c.

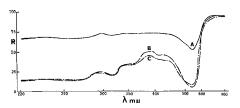



Fig. 7—DRS of FD&C Red No. 3 dye (30 mg.) and lactose (10.00 Gm.). Key: A, control; B, sample; C, sample exposed to 184 hr. artificial light at 2,000 f.c.

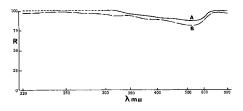



Fig. 8—DRS of FD&C Red No. 3 dye (30 mg.) and zinc sulfate (10.00 Gm.). Key: A, control; B, sample.

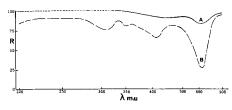



Fig. 9—DRS of FD&C Blue No. 1 dye (30 mg.) and zinc sulfate (10.00 Gm.). Key: A, control; B, sample.

found in the other two dyes under investigation, results in only very minor spectral changes, as seen in Fig. 8. In contrast, ZnSO4 does react to a large extent with Blue No. 1 dye, containing three phenylsulfonic acid groups, as well as with FD&C Yellow No. 5 which also contains a phenylsulfonic acid group, one carboxyl, and one hydroxyl functional group. These phenylsulfonic acid groups may therefore be involved in the observed chemisorption.

Furthermore, the same dye has been shown to react differently, depending on the excipient under investigation. For example, the strength of Mg-(OH)<sub>2</sub>, Ca(OH)<sub>2</sub>, and Al(OH)<sub>3</sub> interaction with Yellow No. 5 dye is markedly different as observed in Figs. 10, 11, and 12, as well as Table V. An examination of these figures indicates that dye-Mg(OH)<sub>2</sub> equilibration facilitates a large decreased reflectance of about 74 units at the  $\lambda_{max}$  of 435 mµ as reported in Fig. 10B; the strength of this large interaction is further supported with the aid of elution studies presented in Fig. 10C. Although Ca(OH)<sub>2</sub> equilibra-

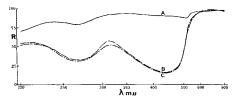



Fig. 10-DRS of FD&C Yellow No. 5 dye (30 mg.) and magnesium hydroxide (10.00 Gm.). Key: A, control; B, sample; C, sample washed with 200 ml. distilled water.

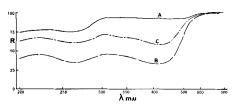



Fig. 11-DRS of FD&C Yellow No. 5 dye (30 mg.) and calcium hydroxide (10.00 Gm.). Key: A, control; B, sample; C, sample washed with 200 ml. distilled water.

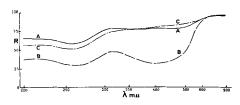



Fig. 12-DRS of FD&C Yellow No. 5 dye (30 mg.) and aluminum hydroxide (10.00 Gm.). Key: A, control; B, sample; C, sample washed with 200 ml. distilled water.

tion with this yellow dye does produce a 59 reflectance unit decrease at the  $\lambda_{max}$  of 410 m $\mu$ , seen in Fig. 11B and Table V, aqueous washing of this sample indicates that about 40% of the dye can be eluted. It is also interesting to point out that although Yellow No. 5 dye equilibration with Al(OH)<sub>3</sub> also produces a 47 reflectance unit decrease at the  $\lambda_{\text{max.}}$  of 400 m $\mu$ , Fig. 12, this dye is eluted to a much greater extent from the surface of the adsorbent with aqueous washing of the sample. The above bathochromic and hyperchromic spectral changes again indicate that reactivity differences of the metallic ion present in these hydroxide adjuvants is  $Mg^{2+} >$  $Ca^{2+} > Al^{3+}$ .

With regard to these interactions, although some systems may not exhibit visual color changes after equilibration, the spectral changes observed in the ultraviolet region may be significant in the photodecomposition of a particular dye.

#### CONCLUSION

The data presented here indicate that the "inert" materials, including starch, lactose, and acacia, do undergo significant interactions with the dyes investigated. Furthermore, various metal-containing adjuvants also chemisorb with certified dyes; the order of chemisorption capacity of the metallic adjuvants with certified dyes was as follows:  $Mg^{2+} >$  $Ca^{2+} > Zn^{2+} \sim Al^{3+}$ . These dye-adjuvant interactions may be responsible for the various color problems encountered in solid pharmaceutical formulations.

It appears that the mechanism involved in these interactions is a combination of a chelation type of interaction and one of chemisorption. This is particularly true where the excipient material does not undergo ionization. It is apparent that these solid-solid interactions are of importance, not only in drug-adjuvant studies, but also in the investigation of color and drug stability.

These studies and those previously conducted with respect to drug-excipient interactions point out the need for incompatibility studies of drug or dyeadjuvant interactions in conjunction with other considerations in the formulation of pharmaceuticals.

#### REFERENCES

- (1) Lach, J. L., and Bornstein, M., J. Pharm. Sci., 54, 1730(1965).
- 1730(1965).
  (2) Bornstein, M., and Lach, J. L., *ibid.*, 55, 1033(1966).
  (3) Lachman, L., Weinstein, S., Swartz, C. J., Urbanyi, T., and Cooper, J., *ibid.*, 50, 141(1961).
  (4) Coodhart, F. W., Everhard, M. E., and Dickcius, D. A., *ibid.*, 53, 338(1964).
  (5) Lachman, L., Kuramoto, R., and Cooper, J., *J. Am Pharm. Assoc.*, *Sci. Ed.*, 47, 871(1958).
  (6) Scott, M. W., Goudie, A. J., and Huetteman, A. J., *ibid.*, 49, 467(1960).
  (7) Kuramoto, R., Lachman, L., and Cooper, J., *ibid.*, 47, 175(1958).
  (8) Brownley, C. A. Jr. and Jackman, J. J. J.

- [175(1958).
  (8) Brownley, C. A., Jr., and Lachman, L., J. Pharm. Sci., 52, 86(1963).
  (9) Kortum, G., Braun, W., and Herzog, G., Angew. Chem., Intern. Ed. Engl., 2, 333(1963).
  (10) Lach, J. L., and Bornstein, M., J. Pharm. Sci., 55, 1040(1966).
  (11) Lieu, V. T., and Frodyma, M. M., Talania, 13, 1319
- (1966)